For drug \( A \), the sample proportion of patients cured is given by:
\[
\hat{p}_1 = \frac{266}{375} \approx 0.709
\]
For drug \( B \), the sample proportion of patients cured is given by:
\[
\hat{p}_2 = \frac{198}{275} \approx 0.720
\]
To find the \( 95\% \) confidence interval for the difference in proportions \( p_1 - p_2 \), we use the formula:
\[
(\hat{p}_1 - \hat{p}_2) \pm z \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}
\]
Where \( z \) is the critical value for \( 95\% \) confidence, which is approximately \( 1.96 \).
Calculating the difference in sample proportions:
\[
\hat{p}_1 - \hat{p}_2 \approx 0.709 - 0.720 = -0.011
\]
Next, we calculate the standard error:
\[
\sqrt{\frac{0.709(1 - 0.709)}{375} + \frac{0.720(1 - 0.720)}{275}} \approx \sqrt{\frac{0.709 \cdot 0.291}{375} + \frac{0.720 \cdot 0.280}{275}} \approx \sqrt{0.000610 + 0.000724} \approx \sqrt{0.001334} \approx 0.0365
\]
Now, we can compute the margin of error:
\[
1.96 \cdot 0.0365 \approx 0.0715
\]
Thus, the confidence interval is:
\[
(-0.011) \pm 0.0715
\]
Calculating the lower and upper limits:
\[
\text{Lower limit} = -0.011 - 0.0715 \approx -0.0815
\]
\[
\text{Upper limit} = -0.011 + 0.0715 \approx 0.0605
\]
Rounding the limits to three decimal places gives:
\[
\text{Lower limit} \approx -0.081
\]
\[
\text{Upper limit} \approx 0.061
\]
The \( 95\% \) confidence interval for \( p_1 - p_2 \) is:
\[
\boxed{(-0.081, 0.061)}
\]