We are given:
- Radius of the planet's orbit: \( r = 7.51 \times 10^{11} \, \text{m} \)
- Period of the planet's motion: \( T = 726 \, \text{days} \)
- Universal gravitational constant: \( G = 6.67259 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2 \)
To use the period in our calculations, we need to convert it to seconds:
\[ T = 726 \, \text{days} \times 24 \, \text{hours/day} \times 3600 \, \text{seconds/hour} \]
\[ T = 726 \times 24 \times 3600 \]
\[ T = 62,726,400 \, \text{s} \]
Kepler's third law in terms of the gravitational constant is:
\[ T^2 = \frac{4 \pi^2 r^3}{G M} \]
Solving for the mass \( M \) of the star:
\[ M = \frac{4 \pi^2 r^3}{G T^2} \]
\[ M = \frac{4 \pi^2 (7.51 \times 10^{11} \, \text{m})^3}{(6.67259 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) (62,726,400 \, \text{s})^2} \]
First, calculate \( r^3 \):
\[ r^3 = (7.51 \times 10^{11} \, \text{m})^3 = 4.2351 \times 10^{35} \, \text{m}^3 \]
Next, calculate \( T^2 \):
\[ T^2 = (62,726,400 \, \text{s})^2 = 3.9347 \times 10^{15} \, \text{s}^2 \]
Now, substitute these values into the equation for \( M \):
\[ M = \frac{4 \pi^2 (4.2351 \times 10^{35} \, \text{m}^3)}{(6.67259 \times 10^{-11} \, \text{N} \cdot \text{m}^2 / \text{kg}^2) (3.9347 \times 10^{15} \, \text{s}^2)} \]
\[ M = \frac{4 \pi^2 \times 4.2351 \times 10^{35}}{6.67259 \times 10^{-11} \times 3.9347 \times 10^{15}} \]
\[ M = \frac{1.6755 \times 10^{37}}{2.6268 \times 10^5} \]
\[ M = 6.3804 \times 10^{31} \, \text{kg} \]
\[
\boxed{M = 6.3804 \times 10^{31} \, \text{kg}}
\]