Questions: The marginal distributions of two random variables X and Y, together with some values of their joint distribution, are given in the table below. Fill in the table in such a way that X and Y are independent random variables. Y=-1 Y=1 Y=2 ----------------------- X=-3 0.08 0.01 0.01 0.10 X=0 0.06 0.60 X=3 0.03 0.30 0.80 0.10 0.10 1.00

The marginal distributions of two random variables X and Y, together with some values of their joint distribution, are given in the table below. Fill in the table in such a way that X and Y are independent random variables.
     Y=-1  Y=1  Y=2    
-----------------------
X=-3 0.08  0.01 0.01 0.10 
X=0        0.06      0.60 
X=3        0.03      0.30 
     0.80  0.10 0.10 1.00
Transcript text: The marginal distributions of two random variables $X$ and $Y$, together with some values of their joint distribution, are given in the table below. Fill in the table in such a way that $X$ and $Y$ are independent random variables. \begin{tabular}{|c|c|c|c|c|} \cline { 2 - 5 } & $Y=-1$ & $Y=1$ & $Y=2$ & \\ \hline$X=-3$ & 0.08 & 0.01 & 0.01 & 0.10 \\ \hline$X=0$ & $\square$ & 0.06 & $\square$ & 0.60 \\ \hline$X=3$ & $\square$ & 0.03 & $\square$ & 0.30 \\ \hline & 0.80 & 0.10 & 0.10 & 1.00 \\ \hline \end{tabular}
failed

Solution

failed
failed

Solution Steps

To ensure that the random variables \(X\) and \(Y\) are independent, the joint probability \(P(X=x, Y=y)\) should equal the product of the marginal probabilities \(P(X=x)\) and \(P(Y=y)\) for all combinations of \(x\) and \(y\). We will use this property to fill in the missing values in the table. Specifically, for each missing value, we will calculate it as the product of the corresponding marginal probabilities.

Step 1: Calculate Missing Joint Probabilities

To fill in the missing values in the joint distribution table, we use the independence property of the random variables \(X\) and \(Y\). The joint probability \(P(X=x, Y=y)\) can be calculated as:

\[ P(X=0, Y=-1) = P(X=0) \cdot P(Y=-1) = 0.6 \cdot 0.8 = 0.48 \]

\[ P(X=0, Y=2) = P(X=0) \cdot P(Y=2) = 0.6 \cdot 0.1 = 0.06 \]

\[ P(X=3, Y=-1) = P(X=3) \cdot P(Y=-1) = 0.3 \cdot 0.8 = 0.24 \]

\[ P(X=3, Y=2) = P(X=3) \cdot P(Y=2) = 0.3 \cdot 0.1 = 0.03 \]

Step 2: Fill in the Table

Using the calculated values, we can now fill in the joint distribution table:

\[ \begin{array}{|c|c|c|c|c|} \cline{2-5} & Y=-1 & Y=1 & Y=2 & \\ \hline X=-3 & 0.08 & 0.01 & 0.01 & 0.10 \\ \hline X=0 & 0.48 & 0.06 & 0.06 & 0.60 \\ \hline X=3 & 0.24 & 0.03 & 0.03 & 0.30 \\ \hline & 0.80 & 0.10 & 0.10 & 1.00 \\ \hline \end{array} \]

Final Answer

The missing values in the joint distribution table are:

  • \(P(X=0, Y=-1) = 0.48\)
  • \(P(X=0, Y=2) = 0.06\)
  • \(P(X=3, Y=-1) = 0.24\)
  • \(P(X=3, Y=2) = 0.03\)

Thus, the final answer is: \[ \boxed{P(X=0, Y=-1) = 0.48, \; P(X=0, Y=2) = 0.06, \; P(X=3, Y=-1) = 0.24, \; P(X=3, Y=2) = 0.03} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful