Questions: Consider the circuit shown, where V1=1.8 V, V2=2.40 V, R1=1.7 k Ohm, R2=1.6 k Ohm, and R3=1.5 k Ohm.
- Part (a) What is the current through resistor R1 in milliamperes?
I1=0.8750 mA
Part (b)
What is the current through resistor R2 in milliamperes?
I2= square mA
Transcript text: Consider the circuit shown, where $V_{1}=1.8 \mathrm{~V}, V_{2}=2.40 \mathrm{~V}, R_{1}=1.7 \mathrm{k} \Omega, R_{2}=1.6 \mathrm{k} \Omega$, and $R_{3}=1.5$ $\mathrm{k} \Omega$.
- Part (a) What is the current through resistor $R_{1}$ in milliamperes?
\[
I_{1}=0.8750 \mathrm{~mA}
\]
Part (b)
What is the current through resistor $R_{2}$ in milliamperes?
\[
I_{2}=\square \mathrm{mA}
\]
Solution
Solution Steps
Step 1: Identify the given values
We are given the following values:
\( V_1 = 1.8 \, \text{V} \)
\( V_2 = 2.4 \, \text{V} \)
\( R_1 = 1.7 \, \text{k} \Omega \)
\( R_2 = 1.6 \, \text{k} \Omega \)
\( R_3 = 1.5 \, \text{k} \Omega \)
\( I_1 = 0.8750 \, \text{mA} \)
Step 2: Calculate the voltage drop across \( R_1 \)
Using Ohm's Law, the voltage drop across \( R_1 \) is:
\[
V_{R1} = I_1 \times R_1
\]
Substituting the given values:
\[
V_{R1} = 0.8750 \, \text{mA} \times 1.7 \, \text{k} \Omega = 0.8750 \times 1.7 = 1.4875 \, \text{V}
\]
Step 3: Determine the voltage at the node between \( R_1 \) and \( R_2 \)
The voltage at the node between \( R_1 \) and \( R_2 \) is:
\[
V_{\text{node}} = V_1 - V_{R1}
\]
Substituting the values:
\[
V_{\text{node}} = 1.8 \, \text{V} - 1.4875 \, \text{V} = 0.3125 \, \text{V}
\]
Step 4: Calculate the current through \( R_2 \)
Using Ohm's Law, the current through \( R_2 \) is:
\[
I_2 = \frac{V_{\text{node}}}{R_2}
\]
Substituting the values:
\[
I_2 = \frac{0.3125 \, \text{V}}{1.6 \, \text{k} \Omega} = \frac{0.3125}{1600} = 0.0001953 \, \text{A} = 0.1953 \, \text{mA}
\]