The correlation coefficient \( r \) is calculated using the formula:
\[
r = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}
\]
Where:
- \( \text{Cov}(X,Y) = -70.809 \)
- \( \sigma_X = 11.852 \)
- \( \sigma_Y = 6.179 \)
Substituting the values:
\[
r = \frac{-70.809}{11.852 \cdot 6.179} \approx -0.967
\]
Thus, the correlation coefficient is:
\[
\boxed{r = -0.967}
\]
To find the regression line, we first calculate the means of \( x \) and \( y \):
\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 30.85
\]
\[
\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = 29.25
\]
Next, we calculate the numerator and denominator for the slope \( \beta \):
Numerator for \( \beta \):
\[
\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} = 6722.64 - 8 \cdot 30.85 \cdot 29.25 = -495.66
\]
Denominator for \( \beta \):
\[
\sum_{i=1}^{n} x_i^2 - n \bar{x}^2 = 8596.48 - 8 \cdot 30.85^2 = 983.32
\]
Now, we can calculate the slope \( \beta \):
\[
\beta = \frac{-495.66}{983.32} \approx -0.5
\]
Next, we calculate the intercept \( \alpha \):
\[
\alpha = \bar{y} - \beta \bar{x} = 29.25 - (-0.5 \cdot 30.85) \approx 44.8
\]
Thus, the equation of the regression line is:
\[
y = 44.8 - 0.5x
\]
To predict the finishing time for a runner with \( \mathrm{VO}_2 \) max of \( 25.86 \, \mathrm{ml/kg/min} \):
\[
\text{Predicted Time} = \alpha + \beta \cdot \text{VO2 Max} = 44.8 - 0.5 \cdot 25.86
\]
Calculating this gives:
\[
\text{Predicted Time} = 44.8 - 12.93 \approx 31.87
\]
Thus, the predicted finishing time is:
\[
\boxed{31.87 \text{ minutes}}
\]
- Correlation Coefficient: \( \boxed{r = -0.967} \)
- Regression Line: \( \boxed{y = 44.8 - 0.5x} \)
- Predicted 5K Finishing Time: \( \boxed{31.87 \text{ minutes}} \)