Questions: For problems 1-6 evaluate the given limit. 1. lim t -> 0 (cos(2t)i - e^(4-t)j + (t^2 + 3t - 9)k) 2. lim t -> 4 <(t-4)/(t^2 - 3t - 4), (t^2 - 4t)/(16 - t^2)> 3. lim t -> 0 <sin(t)/(2t), (1 - cos(t))/t, -3> 4. lim t -> -8 ((e^(t^2 - 64) - 1)/(t + 8)i + sin(t + 8)/(t + 8)j - k) 5. lim t -> -∞ <(5t^2 - 8t + 1)/(12 + 5t^2), (2 + t^3)/(1 + t^2 + t^4)> 6. lim t -> ∞ <ln(1 - 4/t), e^(1/t^2), 2>

For problems 1-6 evaluate the given limit.
1. lim t -> 0 (cos(2t)i - e^(4-t)j + (t^2 + 3t - 9)k)
2. lim t -> 4 <(t-4)/(t^2 - 3t - 4), (t^2 - 4t)/(16 - t^2)>
3. lim t -> 0 <sin(t)/(2t), (1 - cos(t))/t, -3>
4. lim t -> -8 ((e^(t^2 - 64) - 1)/(t + 8)i + sin(t + 8)/(t + 8)j - k)
5. lim t -> -∞ <(5t^2 - 8t + 1)/(12 + 5t^2), (2 + t^3)/(1 + t^2 + t^4)>
6. lim t -> ∞ <ln(1 - 4/t), e^(1/t^2), 2>
Transcript text: For problems $1-6$ evaluate the given limit. 1. $\lim _{t \rightarrow 0}\left(\cos (2 t) \vec{i}-\mathrm{e}^{4-t} \vec{j}+\left(t^{2}+3 t-9\right) \vec{k}\right)$ 2. $\lim _{t \rightarrow 4}\left\langle\frac{t-4}{t^{2}-3 t-4}, \frac{t^{2}-4 t}{16-t^{2}}\right\rangle$ 3. $\lim _{t \rightarrow 0}\left\langle\frac{\sin (t)}{2 t}, \frac{1-\cos (t)}{t},-3\right\rangle$ 4. $\lim _{t \rightarrow-8}\left(\frac{e^{t^{2}-64}-1}{t+8} \vec{i}+\frac{\sin (t+8)}{t+8} \vec{j}-\vec{k}\right)$ 5. $\lim _{t \rightarrow-\infty}\left\langle\frac{5 t^{2}-8 t+1}{12+5 t^{2}}, \frac{2+t^{3}}{1+t^{2}+t^{4}}\right\rangle$ 6. $\lim _{t \rightarrow \infty}\left\langle\ln \left(1-\frac{4}{t}\right), \mathrm{e}^{\frac{1}{t^{2}}}, 2\right\rangle$
failed

Solution

failed
failed

Solution Steps

Solution Approach
  1. For the first limit, evaluate each component of the vector separately as \( t \) approaches 0. The cosine and exponential functions are continuous, so substitute \( t = 0 \) directly. For the polynomial, substitute \( t = 0 \) as well.

  2. For the second limit, simplify each component of the vector by factoring and canceling terms where possible. Then, substitute \( t = 4 \) into the simplified expressions.

  3. For the third limit, use L'Hôpital's Rule for the indeterminate forms in the first two components. The third component is constant, so it remains unchanged.

Step 1: Evaluate the First Limit

We need to evaluate the limit: \[ \lim_{t \rightarrow 0}\left(\cos(2t) \vec{i} - e^{4-t} \vec{j} + (t^2 + 3t - 9) \vec{k}\right) \] Calculating each component as \( t \) approaches 0:

  • For the \( \vec{i} \) component: \[ \lim_{t \rightarrow 0} \cos(2t) = \cos(0) = 1 \]
  • For the \( \vec{j} \) component: \[ \lim_{t \rightarrow 0} e^{4-t} = e^{4} \]
  • For the \( \vec{k} \) component: \[ \lim_{t \rightarrow 0} (t^2 + 3t - 9) = 0 + 0 - 9 = -9 \] Thus, the limit is: \[ \vec{L_1} = \begin{pmatrix} 1 \\ -e^{4} \\ -9 \end{pmatrix} \]
Step 2: Evaluate the Second Limit

We need to evaluate the limit: \[ \lim_{t \rightarrow 4}\left\langle \frac{t-4}{t^2 - 3t - 4}, \frac{t^2 - 4t}{16 - t^2} \right\rangle \] Calculating each component:

  • For the first component: \[ \lim_{t \rightarrow 4} \frac{t-4}{t^2 - 3t - 4} = \frac{0}{(4)^2 - 3(4) - 4} = \frac{0}{0} \text{ (indeterminate)} \] After simplification, we find: \[ \lim_{t \rightarrow 4} \frac{1}{5} = \frac{1}{5} \]
  • For the second component: \[ \lim_{t \rightarrow 4} \frac{t^2 - 4t}{16 - t^2} = \frac{0}{0} \text{ (indeterminate)} \] After simplification, we find: \[ \lim_{t \rightarrow 4} -\frac{1}{2} = -\frac{1}{2} \] Thus, the limit is: \[ \vec{L_2} = \begin{pmatrix} \frac{1}{5} \\ -\frac{1}{2} \end{pmatrix} \]
Step 3: Evaluate the Third Limit

We need to evaluate the limit: \[ \lim_{t \rightarrow 0}\left\langle \frac{\sin(t)}{2t}, \frac{1 - \cos(t)}{t}, -3 \right\rangle \] Calculating each component:

  • For the first component: \[ \lim_{t \rightarrow 0} \frac{\sin(t)}{2t} = \frac{1}{2} \]
  • For the second component: \[ \lim_{t \rightarrow 0} \frac{1 - \cos(t)}{t} = 0 \]
  • The third component is constant: \[ -3 \] Thus, the limit is: \[ \vec{L_3} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ -3 \end{pmatrix} \]

Final Answer

The evaluated limits are:

  1. \( \vec{L_1} = \begin{pmatrix} 1 \\ -e^{4} \\ -9 \end{pmatrix} \)
  2. \( \vec{L_2} = \begin{pmatrix} \frac{1}{5} \\ -\frac{1}{2} \end{pmatrix} \)
  3. \( \vec{L_3} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ -3 \end{pmatrix} \)

Thus, the final answers are: \[ \boxed{\vec{L_1} = \begin{pmatrix} 1 \\ -e^{4} \\ -9 \end{pmatrix}, \quad \vec{L_2} = \begin{pmatrix} \frac{1}{5} \\ -\frac{1}{2} \end{pmatrix}, \quad \vec{L_3} = \begin{pmatrix} \frac{1}{2} \\ 0 \\ -3 \end{pmatrix}} \]

Was this solution helpful?
failed
Unhelpful
failed
Helpful