To find the electric potential \( dV \) at point \( P \) due to a small segment of the rod, we start by considering a small segment of thickness \( dx \) located at \( (x, 0) \) on the rod. The charge of this small segment is \( dq = \lambda \, dx \).
The distance \( r \) from this segment to point \( P \) located at \( (0, y) \) is given by:
\[ r = \sqrt{x^2 + y^2} \]
The electric potential \( dV \) due to this small segment is:
\[ dV = \frac{k_e \, dq}{r} = \frac{k_e \, \lambda \, dx}{\sqrt{x^2 + y^2}} \]
Thus, the expression for the electric potential at point \( P \) due to a small segment of the rod is:
\[ dV = \frac{k_e \, \lambda \, dx}{\sqrt{x^2 + y^2}} \]
\[
\boxed{dV = \frac{k_e \lambda \, dx}{\sqrt{x^2 + y^2}}}
\]
The rod lies along the \( x \)-axis with its midpoint at the origin, and its total length is \( d = 2.4 \, \text{m} \). Therefore, the rod extends from \( -1.2 \, \text{m} \) to \( 1.2 \, \text{m} \).
The correct limits for the integral to find the total electric potential at point \( P \) are from \( -1.2 \, \text{m} \) to \( 1.2 \, \text{m} \).
\[
\boxed{-1.2 \, \text{m} \text{ to } 1.2 \, \text{m}}
\]
To find the total electric potential \( V \) at point \( P \), we integrate the expression for \( dV \) over the length of the rod:
\[
V = \int_{-1.2}^{1.2} \frac{k_e \lambda \, dx}{\sqrt{x^2 + y^2}}
\]
Given:
- \( k_e = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)
- \( \lambda = 8.5 \times 10^{-9} \, \text{C} / \text{m} \)
- \( y = 0.25 \, \text{m} \)
\[
V = k_e \lambda \int_{-1.2}^{1.2} \frac{dx}{\sqrt{x^2 + 0.25^2}}
\]
This integral can be evaluated using a standard integral formula:
\[
\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left( x + \sqrt{x^2 + a^2} \right) + C
\]
Applying the limits:
\[
V = k_e \lambda \left[ \ln \left( x + \sqrt{x^2 + 0.25^2} \right) \right]_{-1.2}^{1.2}
\]
\[
V = k_e \lambda \left[ \ln \left( 1.2 + \sqrt{1.2^2 + 0.25^2} \right) - \ln \left( -1.2 + \sqrt{(-1.2)^2 + 0.25^2} \right) \right]
\]
Since \( \ln(a) - \ln(b) = \ln \left( \frac{a}{b} \right) \):
\[
V = k_e \lambda \ln \left( \frac{1.2 + \sqrt{1.2^2 + 0.25^2}}{-1.2 + \sqrt{1.2^2 + 0.25^2}} \right)
\]
Calculating the values inside the logarithm:
\[
\sqrt{1.2^2 + 0.25^2} = \sqrt{1.44 + 0.0625} = \sqrt{1.5025} \approx 1.2258
\]
\[
V = 8.99 \times 10^9 \times 8.5 \times 10^{-9} \times \ln \left( \frac{1.2 + 1.2258}{-1.2 + 1.2258} \right)
\]
\[
V = 76.415 \times \ln \left( \frac{2.4258}{0.0258} \right)
\]
\[
V = 76.415 \times \ln (94.0078)
\]
\[
V = 76.415 \times 4.5439 \approx 347.4 \, \text{V}
\]
\[
\boxed{V \approx 347.4 \, \text{V}}
\]
\[
\boxed{dV = \frac{k_e \lambda \, dx}{\sqrt{x^2 + y^2}}}
\]
\[
\boxed{-1.2 \, \text{m} \text{ to } 1.2 \, \text{m}}
\]
\[
\boxed{V \approx 347.4 \, \text{V}}
\]