The balanced chemical equation for the fermentation of glucose is:
\[
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} + 2 \mathrm{CO}_{2}
\]
Given: 0.65 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
From the balanced equation, 1 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ produces 2 moles of $\mathrm{CO}_{2}$.
Therefore, 0.65 mol of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ will produce:
\[
0.65 \, \text{mol} \times 2 = 1.30 \, \text{mol of } \mathrm{CO}_{2}
\]
\[
\boxed{1.30 \, \text{mol of } \mathrm{CO}_{2}}
\]
Given: 8.49 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
First, calculate the molar mass of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$:
\[
\text{Molar mass of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} = 2(12.01) + 6(1.008) + 16.00 = 46.068 \, \text{g/mol}
\]
Calculate moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$:
\[
\text{Moles of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} = \frac{8.49 \, \text{g}}{46.068 \, \text{g/mol}} = 0.1843 \, \text{mol}
\]
From the balanced equation, 2 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ are produced from 1 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
Therefore, moles of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ needed:
\[
\text{Moles of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} = \frac{0.1843 \, \text{mol}}{2} = 0.09215 \, \text{mol}
\]
Calculate the mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$:
\[
\text{Molar mass of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} = 6(12.01) + 12(1.008) + 6(16.00) = 180.156 \, \text{g/mol}
\]
\[
\text{Mass of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} = 0.09215 \, \text{mol} \times 180.156 \, \text{g/mol} = 16.60 \, \text{g}
\]
\[
\boxed{16.60 \, \text{g of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}
\]
Given: 3.25 g of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
First, calculate moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$:
\[
\text{Moles of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} = \frac{3.25 \, \text{g}}{46.068 \, \text{g/mol}} = 0.07056 \, \text{mol}
\]
From the balanced equation, 2 moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ produce 2 moles of $\mathrm{CO}_{2}$.
Therefore, moles of $\mathrm{CO}_{2}$ produced:
\[
\text{Moles of } \mathrm{CO}_{2} = 0.07056 \, \text{mol}
\]
Calculate the mass of $\mathrm{CO}_{2}$:
\[
\text{Molar mass of } \mathrm{CO}_{2} = 12.01 + 2(16.00) = 44.01 \, \text{g/mol}
\]
\[
\text{Mass of } \mathrm{CO}_{2} = 0.07056 \, \text{mol} \times 44.01 \, \text{g/mol} = 3.105 \, \text{g}
\]
\[
\boxed{3.105 \, \text{g of } \mathrm{CO}_{2}}
\]
\[
\boxed{1.30 \, \text{mol of } \mathrm{CO}_{2}}
\]
\[
\boxed{16.60 \, \text{g of } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}
\]
\[
\boxed{3.105 \, \text{g of } \mathrm{CO}_{2}}
\]