The quadratic function is given by \( f(x) = x^2 - 6x - 16 \). The vertex form of a quadratic function is \( f(x) = a(x-h)^2 + k \), where \((h, k)\) is the vertex. To find the vertex, we use the formula \( h = -\frac{b}{2a} \).
For the given function, \( a = 1 \) and \( b = -6 \).
\[
h = -\frac{-6}{2 \times 1} = 3
\]
Substitute \( x = 3 \) back into the function to find \( k \):
\[
k = f(3) = 3^2 - 6 \times 3 - 16 = 9 - 18 - 16 = -25
\]
Thus, the vertex is \((3, -25)\).
Y-intercept:
The y-intercept occurs when \( x = 0 \).
\[
f(0) = 0^2 - 6 \times 0 - 16 = -16
\]
So, the y-intercept is \((0, -16)\).
X-intercepts:
To find the x-intercepts, set \( f(x) = 0 \):
\[
x^2 - 6x - 16 = 0
\]
Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \):
\[
x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times (-16)}}{2 \times 1}
\]
\[
x = \frac{6 \pm \sqrt{36 + 64}}{2}
\]
\[
x = \frac{6 \pm \sqrt{100}}{2}
\]
\[
x = \frac{6 \pm 10}{2}
\]
The solutions are \( x = 8 \) and \( x = -2 \). Thus, the x-intercepts are \((8, 0)\) and \((-2, 0)\).
The axis of symmetry for a parabola in the form \( f(x) = ax^2 + bx + c \) is the vertical line \( x = h \). From Step 1, we found \( h = 3 \).
Thus, the axis of symmetry is \( x = 3 \).
- Vertex: \((3, -25)\)
- Y-intercept: \((0, -16)\)
- X-intercepts: \((8, 0)\) and \((-2, 0)\)
- Axis of symmetry: \( x = 3 \)
{"axisType": 3, "coordSystem": {"xmin": -3, "xmax": 9, "ymin": -30, "ymax": 10}, "commands": ["y = x**2 - 6*x - 16"], "latex_expressions": ["$y = x^2 - 6x - 16$"]}