First, we need to convert the masses from grams to kilograms.
\[
m_{\text{bullet}} = 15 \, \text{g} = 0.015 \, \text{kg}
\]
\[
m_{\text{wood}} = 500 \, \text{g} = 0.5 \, \text{kg}
\]
Next, we calculate the initial and final momentum of the bullet.
Initial momentum of the bullet:
\[
p_{\text{initial, bullet}} = m_{\text{bullet}} \times v_{\text{initial, bullet}} = 0.015 \, \text{kg} \times 350 \, \text{m/s} = 5.25 \, \text{kg} \cdot \text{m/s}
\]
Final momentum of the bullet:
\[
p_{\text{final, bullet}} = m_{\text{bullet}} \times v_{\text{final, bullet}} = 0.015 \, \text{kg} \times 75 \, \text{m/s} = 1.125 \, \text{kg} \cdot \text{m/s}
\]
The change in momentum of the bullet is:
\[
\Delta p_{\text{bullet}} = p_{\text{initial, bullet}} - p_{\text{final, bullet}} = 5.25 \, \text{kg} \cdot \text{m/s} - 1.125 \, \text{kg} \cdot \text{m/s} = 4.125 \, \text{kg} \cdot \text{m/s}
\]
By conservation of momentum, the change in momentum of the bullet is equal to the momentum gained by the wooden object.
\[
\Delta p_{\text{bullet}} = p_{\text{wood}}
\]
\[
4.125 \, \text{kg} \cdot \text{m/s} = m_{\text{wood}} \times v_{\text{wood}}
\]
Solving for \( v_{\text{wood}} \):
\[
v_{\text{wood}} = \frac{4.125 \, \text{kg} \cdot \text{m/s}}{0.5 \, \text{kg}} = 8.25 \, \text{m/s}
\]
Finally, we calculate the kinetic energy of the wooden object using the formula:
\[
KE_{\text{wood}} = \frac{1}{2} m_{\text{wood}} v_{\text{wood}}^2
\]
\[
KE_{\text{wood}} = \frac{1}{2} \times 0.5 \, \text{kg} \times (8.25 \, \text{m/s})^2 = 0.25 \, \text{kg} \times 68.0625 \, \text{m}^2/\text{s}^2 = 17.0156 \, \text{J}
\]
\[
\boxed{KE_{\text{wood}} = 17.02 \, \text{J}}
\]