First, we need to convert the initial temperature from Celsius to Kelvin. The formula for this conversion is:
\[ T(K) = T(^{\circ}C) + 273.15 \]
Given:
\[ T_1 = 30.12^{\circ}C \]
So,
\[ T_1(K) = 30.12 + 273.15 = 303.27 \, \text{K} \]
The combined gas law relates the pressure, volume, and temperature of a gas:
\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \]
Given:
\[ P_1 = 0.86 \, \text{atm} \]
\[ V_1 = 2.3 \, \text{L} \]
\[ T_1 = 303.27 \, \text{K} \]
\[ P_2 = 0.8 \, \text{atm} \]
\[ V_2 = 1.6 \, \text{L} \]
We need to find \( T_2 \).
Rearrange the combined gas law to solve for \( T_2 \):
\[ T_2 = \frac{P_2 V_2 T_1}{P_1 V_1} \]
Substitute the given values:
\[ T_2 = \frac{(0.8 \, \text{atm}) (1.6 \, \text{L}) (303.27 \, \text{K})}{(0.86 \, \text{atm}) (2.3 \, \text{L})} \]
Perform the calculation:
\[ T_2 = \frac{0.8 \times 1.6 \times 303.27}{0.86 \times 2.3} \]
\[ T_2 = \frac{387.6864}{1.978} \]
\[ T_2 \approx 196.00 \, \text{K} \]