First, we need to convert the speed of the baseball from miles per hour (mph) to meters per second (m/s). Given that \(1 \text{ mile} = 1609 \text{ m}\) and \(1 \text{ hour} = 3600 \text{ seconds}\), we can convert \(94 \text{ mph}\) as follows:
\[
94 \text{ mph} = 94 \times \frac{1609 \text{ m}}{1 \text{ mile}} \times \frac{1 \text{ hour}}{3600 \text{ s}} = 42.0111 \text{ m/s}
\]
Using the de Broglie wavelength formula:
\[
\lambda = \frac{h}{mv}
\]
where \(h = 6.626 \times 10^{-34} \text{ m}^2 \text{ kg/s}\) is Planck's constant, \(m = 0.145 \text{ kg}\) is the mass of the baseball, and \(v = 42.0111 \text{ m/s}\) is the velocity.
\[
\lambda = \frac{6.626 \times 10^{-34}}{0.145 \times 42.0111} = 1.086 \times 10^{-34} \text{ m}
\]
Assuming the mass of a hydrogen atom is approximately \(1.67 \times 10^{-27} \text{ kg}\), we use the same de Broglie wavelength formula:
\[
\lambda = \frac{h}{mv}
\]
where \(m = 1.67 \times 10^{-27} \text{ kg}\) and \(v = 42.0111 \text{ m/s}\).
\[
\lambda = \frac{6.626 \times 10^{-34}}{1.67 \times 10^{-27} \times 42.0111} = 9.438 \times 10^{-12} \text{ m}
\]
- The wavelength of the baseball is \(\boxed{1.086 \times 10^{-34} \text{ m}}\).
- The wavelength of the hydrogen atom is \(\boxed{9.438 \times 10^{-12} \text{ m}}\).