The balanced chemical equation for reaction (a) is:
\[ 4 \mathrm{C} + \mathrm{S}_{8} \rightarrow 4 \mathrm{CS}_{2} \]
From the equation, 1 mole of \(\mathrm{S}_{8}\) produces 4 moles of \(\mathrm{CS}_{2}\).
Given that 2.2 moles of \(\mathrm{S}_{8}\) are used, we can calculate the moles of \(\mathrm{CS}_{2}\) produced using the stoichiometry:
\[ x = 2.2 \, \text{mol} \, \mathrm{S}_{8} \times \frac{4 \, \text{mol} \, \mathrm{CS}_{2}}{1 \, \text{mol} \, \mathrm{S}_{8}} = 8.8 \, \text{mol} \, \mathrm{CS}_{2} \]
The balanced chemical equation for reaction (b) is:
\[ \mathrm{CS}_{2} + 3 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} + 2 \mathrm{SO}_{2} \]
From the equation, 3 moles of \(\mathrm{O}_{2}\) produce 2 moles of \(\mathrm{SO}_{2}\).
Given that 3.2 moles of \(\mathrm{O}_{2}\) are used, we can calculate the moles of \(\mathrm{SO}_{2}\) produced using the stoichiometry:
\[ x = 3.2 \, \text{mol} \, \mathrm{O}_{2} \times \frac{2 \, \text{mol} \, \mathrm{SO}_{2}}{3 \, \text{mol} \, \mathrm{O}_{2}} = 2.1333 \, \text{mol} \, \mathrm{SO}_{2} \]
The balanced chemical equation for reaction (c) is:
\[ \mathrm{N}_{2} \mathrm{H}_{4} + 3 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} + 2 \mathrm{H}_{2} \mathrm{O} \]
This equation shows that 3 moles of \(\mathrm{O}_{2}\) produce 2 moles of \(\mathrm{NO}_{2}\).
- For reaction (a), the moles of \(\mathrm{CS}_{2}\) produced are \(\boxed{8.8 \, \text{mol}}\).
- For reaction (b), the moles of \(\mathrm{SO}_{2}\) produced are \(\boxed{2.1333 \, \text{mol}}\).
- For reaction (c), the stoichiometry is established, but no specific calculation is required as no moles are given.