Heisenberg's Uncertainty Principle states: \[ \Delta x \cdot \Delta p \geq \frac{\hbar}{2} \] where \(\Delta p\) is the uncertainty in momentum.
\[ \Delta p \geq \frac{\hbar}{2\Delta x} \] Substitute the given values: \[ \Delta p \geq \frac{1.055 \times 10^{-34}}{2 \times 1.0 \times 10^{-10}} \] \[ \Delta p \geq \frac{1.055 \times 10^{-34}}{2 \times 10^{-10}} \] \[ \Delta p \geq \frac{1.055 \times 10^{-34}}{2 \times 10^{-10}} = 5.275 \times 10^{-25} \text{ kg m/s} \]
Momentum (\(p\)) is given by: \[ p = m \cdot v \] where \(m\) is the mass of the electron (\(9.11 \times 10^{-31}\) kg).
\[ \Delta v = \frac{\Delta p}{m} \] Substitute the values: \[ \Delta v = \frac{5.275 \times 10^{-25}}{9.11 \times 10^{-31}} \] \[ \Delta v = 5.79 \times 10^5 \text{ m/s} \]
The uncertainty in the velocity of the electron is \(5.79 \times 10^5 \text{ m/s}\).
Oops, Image-based questions are not yet availableUse Solvely.ai for full features.
Failed. You've reached the daily limit for free usage.Please come back tomorrow or visit Solvely.ai for additional homework help.